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Dedication

This book is dedicated to everyone working in the process industry who is seeking to 
advance process performance by gaining a greater understanding of first-principle process 
relationships and the opportunities to improve automation system dynamics and strate-
gies. The authors are especially appreciative of practitioners who are willing to invest the 

time to use the digital twin and first-principle process simulations with automation dynam-
ics to develop a deeper knowledge and cultivate innovation to get the most out of the largely 
untapped capability of today’s measurements and control systems to achieve consistent and 

reliable process control improvements.
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5
Digital Twin

5.1  Introduction
The requirements for management of change are stricter than ever in the process 
industry. Validation requirements for pharmaceuticals involving extensive and inten-
sive documentation of design, qualification, and verification pose an even larger moti-
vation to minimize change. The shear complexity and effort involved limits time for 
creativity and discourages doing anything that changes the process as defined by 
research and development (R&D). The Process Analytical Technology (PAT) initiative 
seeks to address these concerns to promote innovation and continuous improvement.

Often the process is set based on laboratory benchtop and pilot plant runs. Even here 
the opportunities are narrow because batch cycle times are extremely long, especially for 
new biologics (e.g., 10 days for mammalian cell bioreactors), and the time to market must 
be minimized to make the most out of patent protection for high-value-added products.

The key to addressing this reality is the digital twin. The actual configuration, 
including operator interface and alarm systems, is the same as used in the lab, pilot 
plant, or production plant. The signals can use actual input/output (I/O) channels for 
communication by simulated input/outputs (SIO) or a virtual input/output module 
(VIM). If necessary, an actual distributed control system (DCS) can be connected with 
a first-principle model of the process running with communications to the DCS via 
open platform communications (OPC). Recent breakthroughs in kinetic modeling 
(detailed in the new Chapter 6) enable model parameters to be readily set so that the 
batch profiles in the digital twin match those in the lab and plant.
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144 New Directions in Bioprocess Modeling and Control 

Increasingly, R&D is realizing the value of the increased capability and flexibility 
of a small DCS to run batches automatically, greatly reducing cycle time and nonin-
tentional variability. The transition from lab to pilot plant to production plant of the 
control system and digital twin is seamless and fast, greatly reducing the validation 
burden.

The key to the scientific method and innovation is experimentation. Presently, 
experimentation is largely limited to the early phases of R&D. It is increasingly recog-
nized that the digital twin enables rapid and free experimentation with speedup factors 
greater than 500 so that a 10-day batch can be completed and analyzed in 30 minutes.

The digital twin previously known as virtual plant is a relatively new concept that 
is easily confused with existing simulation methods for process design, configuration 
checkout, and operating training systems. Users may not realize that most of the exist-
ing batch process simulations are off-line and noninteractive, and that most of the real-
time dynamic process simulations were originally designed for continuous processes. 
These real-time process simulations can develop severe numerical errors or even fail 
under the extreme conditions of batch operations and require interfaces for communi-
cating I/O, controlling inventory, and coordinating with the control system in speed-
ing up, slowing down, pausing, or resuming. The control system engineer is probably 
most familiar with tieback simulations because these have been predominantly used 
for configuration checkout and operating training systems. The process response in 
these tiebacks is mimicked by the trial-and-error adjustment of ramp rates. Ramps are 
triggered by the manual inclusion of flow path logic to include the opening and clos-
ing of valves or the turning on or off of pumps.

Section 5.2 of this chapter discusses the key features that distinguish a digital twin 
from existing simulation systems and itemizes the important advantages of the digital 
twin approach. Section 5.3 provides a spectrum of uses for digital twins. Section 5.4 
concludes with the basic requirements and issues concerning implementing a digital 
twin.

The last two sections note the role of a benchtop system with an industrial control 
system in getting the most out of a digital twin. This chapter shows how a digital twin 
creates an environment for innovation that is the heart of the PAT initiative.

Learning Objectives
• Appreciate the significance of being able to export and import to the real plant

• Recognize the differences between different types of simulations
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145Chapter 5 – Digital Twin

• Know the diverse opportunities that are essential to getting the most from PAT

• Realize the importance of a benchtop and pilot plant system with an industrial 
control system

• Know the basic digital twin implementation steps

• Develop the ability to nonintrusively explore, develop, and demonstrate 
improve ments

• Understand how to develop online process metrics to automatically document 
benefits of improvements

• Understand how to use an MPC nonintrusively for adaptation

• Be introduced to the simpler thermodynamic requirements of bioreactors

• Recognize the importance of a charge balance for pH

5.2  Key Features
The first key feature that distinguishes a digital twin from process simulators is its 
ability to use the configuration, historian, displays, and advanced control tool set of the 
real plant without translation, emulation, special interfaces, or custom modifications. 
The configuration database from the real plant can be exported and then imported 
and downloaded into a personal computer or a control system computer just as if it 
were an actual hardware controller. Also, files for operator graphics, process history 
charts, and data history from the real plant can be copied to the digital twin so the user 
has the entire control system of the real plant on a computer, as shown in Figure 5-2a 
(intent is to convey knowledge paths and not the actual process being simulated) [1].

The use of the actual configuration, database, displays, historian, 
and advanced control tool set without any translation, emula-

tion, special interfaces, or custom modification enables inherent 
 replication of the real control system.

Most dynamic, high-fidelity process simulation software offers the ability to build 
a basic control strategy or sequence inside the simulation environment. However, sim-
ulation developers tend to have a process rather than a control background and focus. 
It is unrealistic to expect the process and batch control capability offered in simulation 
software to be in the same realm as the control capability of DCS software, which is 
the culmination of a hundred engineering years (i.e., 5 years by 20 engineers) or more 
of an effort by process control experts. The overall control functionality in process 
simulators is primitive compared to the capabilities offered in the modern DCS. The 
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147Chapter 5 – Digital Twin

DCS offers capabilities such as Sequential Function Charts and basic function blocks, 
the batch manager, and advanced control tools like multivariable model predictive 
control (MPC). These are almost nonexistent in simulators. The effort to duplicate even 
a simplified version of a control system in a dynamic simulation is great. At best, the 
user ends up with two control systems with no assurance that they will match well 
and no method for automatically managing changes between them.

Consequently, most simulation software now offers a standard or custom OPC 
interface. However, for the simulations with material balances to be able to run inde-
pendently of the DCS for development and testing, the simulations must still have 
internal pressure and level loops set up to prevent volumes from running dry, over-
flowing, over pressurizing, or developing flow reversals from pressure gradient rever-
sals, which can lead to fatal numerical errors [1]. Tables must be mapped that transfer 
control from these internal simulation loops to the DCS loops and initialize the proper 
controlled variables, set points, and manipulated variables. DCS loops that do not have 
a counterpart in the simulation still need to have their controller outputs initialized. 
The use of standard DCS blocks for split-ranged control, velocity limiting, signal char-
acterization, and signal selection makes the proper initialization of external simula-
tions manageable, but still difficult.

The digital twin eliminates the custom programming of control 
strategies into process simulations and eliminates of the signifi-

cant simplification and the extra effort, verification, revision, and 
 coordination to ensure fidelity.

The digital twin model has the material balance, component balances, energy bal-
ance, charge balance, and kinetics for a particular type of cell culture and product as 
detailed in Chapter 6. The user can drag blocks for process streams, mass flowmeters, 
pumps, fans, transmitters, control valves, and actuators into the model, and then wire 
them up to the bioreactor model. The process information is automatically conveyed 
from block to block through the “wires” that function as process and signal paths. 
The flow in each process path is automatically computed, as described in Chapter 6, 
from pressures set for streams entering or exiting the model, bioreactor pressure, and 
from intervening pump or fan speeds, valve positions, and pressure drops from flow 
resistance. It is unnecessary to duplicate level and pressure loops for inventory control 
and sequences for batch operation or to add interface tables for communication of I/O.

The graphical configuration of process models linked to the control 
modules eliminates the need to duplicate inventory and batch control 

or to add interface tables.
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148 New Directions in Bioprocess Modeling and Control 

Implementing the process simulation as process models in the digital twin offers 
advantages beyond the elimination of the previously noted issues of duplicating loops 
and configuring interface tables. Foremost is the digital twin’s inherent ability to run 
the process models at the same real-time execution time multiplier as the control mod-
ules. This ensures that the user can set a common real-time multiplier and that the 
simulation and control system will slow down or speed up in unison. The user can 
set a real-time execution multiplier of 1/30 to 30 for all modules in the digital twin. 
When external high-fidelity simulation packages are used, the actual real-time fac-
tor may depend on processor loading. This is because of the complexity of the calcu-
lations associated with the objectives of process or equipment design. Often during 
the times of greatest interest, during disturbances or failures, these simulations slow 
down because the integration step size has decreased for numerical stability and the 
control system and operator activity have increased. Even if the hook exists between 
the simulation and DCS real-time multipliers, the DCS is always playing catch-up.

The digital twin addresses the difficulty of ensuring that the control 
system is running at the same real-time multiplier as a separate pro-

cess simulation during the times of greatest interest.

The speedup of the process model can be much faster than the real-time multi-
plier for the control system. The process model speedup is the product of speedup 
factors for kinetics and the material and energy balances as detailed in Chapter 6. If 
the kinetic speedup factor is 10 and the material and energy balance factor is 50, the 
process model speedup is 500. If the control system speedup is 10 that can be set via 
Figure 5-2b screen, the response times of the instrumentation could be reduced by a 
factor of 50 to keep the proportional-integral-derivative (PID) controller tuning about 
the same. However, the process flow ranges of final control elements and flow mea-
surements must be increased by a factor equal to the kinetic speedup.

The process models in a digital twin can be designed to show the proper behavior 
for failures, start-ups, shutdowns, and batch sequences. This means that the process 
models can handle zero flows (closed valves and turned-off pumps or fans), empty 
volumes, non-equilibrium conditions, and imperfect mixing. Sophisticated external 
(non-digital twin) dynamic process simulations are prone to fatal numerical errors 
from ill-conditioned matrices used for the simultaneous solution of stream conditions 
by the pressure-flow solver [2]. These simulations may not only slow down but they 
may also shut down during extreme conditions. Consequently, the simulation of batch 
processes often requires specialized software that runs off-line as a single program 
execution. Functionally, the run conditions are set at the time of execution. These batch 
process simulations may appear to the user or be cited by the supplier as interactive, 
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149Chapter 5 – Digital Twin

but a change in conditions or parameters requires that the entire program and the 
batch process be re-executed from start to finish. The ability to include the interaction 
between the process and the batch and process control strategies is severely limited or 
impossible. Because these programs are not running in real time or a multiple of real 
time, it is not possible to pause, restore, or play back parts of a batch.

It is important to verify whether a dynamic simulation can handle the 
zero flows, empty volumes, and non-equilibrium conditions associated 

with batch operation.

Most external (non-digital twin) batch process simulation software 
offered to date is not truly interactive with either the user or the 

 control system.

Process simulations developed by process engineers can predict self-regulating 
process gains relatively accurately because of the sophistication of the physical prop-
erties, thermodynamics, interactions, and equations of state needed for continuous 
process and equipment design. Process engineers tend to think steady state. Batch 
process design is noticeably absent in books and courses on chemical engineering. 

Figure 5-2b.  Screen for control of digital twin speed, modes, capture, and playback.
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Consequently, these engineers learn and think in terms of a steady state and equilib-
rium that is consistent with continuous processes.

Most dynamic real-time process simulations for chemical processes 
were developed by process engineers with steady-state process and 

equipment design in mind.

Process models designed by control engineers can be set up to do a better job than 
process simulations in modeling system dynamics by including the effect of transpor-
tation delays, mixing delays, mass transfer rates, kinetics, analyzer cycle times, sensor 
lags, noise, resolution, and deadband. The result is a closer match to the dead time, 
time constant, or integrating process gain and a fidelity that is more in tune with the 
spectrum of uses for control systems [2, 3].

The process simulation dead time is often less than the actual dead 
time because of the omission of transportation delays, mixing delays, 
mass transfer rates, kinetics, analyzer cycle time, sensor lags, noise, 

resolution, and deadband.

The digital twin has the ability to simultaneously stop and start the execution and 
restore and replay simulated conditions for all the control and the simulation models. 
Now emerging is the ability to replay actual plant data history files at high speeds to 
adapt and test the process models without having a connection to the actual plant.

Most simulations used for control system checkout and operator training become 
obsolete after start-up. The investment is lost. The digital twin offers a better chance of 
keeping the control system up to date by simply importing the most current configura-
tion and enabling the simulation to better match process changes using the nonintru-
sive automatic adaptation described in Section 5.4.

External (non-digital twin) simulations used for control system check-
out and operator training become obsolete after start-up because they 

lack the ability to be automatically updated and adapted.

Finally, in a digital twin everything is done in the same configuration environment 
that is used for the actual control system. The focus can be more on the application 
than learning the inevitable undocumented features and tips and techniques associ-
ated with any new simulation software and interface. The advantages offered by a 
digital twin are summarized as follows:

• Control system and graphics do not need to be duplicated, emulated, or translated.

• Special data interfaces, tables, and initialization issues are avoided.
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151Chapter 5 – Digital Twin

• All batch, basic, and advanced control tools available in an actual control system 
can be readily tried out.

• Controls and simulation can run in unison at the same real-time multiplier.

• Controls and simulation scenarios can be saved, restored, and played back.

• Actual plant data can be played back at high speeds for testing and adaptation.

• Simulations can handle extreme conditions of batch operations and failures.

• Simulations can incorporate dynamics that are important for tuning and 
performance.

• Controls and simulation can stay up to date and have a longer life cycle.

• Engineers can work in the same environment and focus on the application.

5.3  Spectrum of Uses
The most familiar use of a digital twin is for testing and training. For the checkout of 
batch sequences and the training of operators, it is important to be able to repetitively 
and rapidly simulate batch phases. The ability to stop, start, save, restore, and replay 
scenarios and record operator actions is critical. For first-pass testing and familiariza-
tion of sequences and graphics, an automated tieback simulation may be sufficient. To 
test and learn about the interaction and performance of both control strategies and the 
process, the higher fidelity dynamics offered by process models is important. It opens 
the door to upgrading the process and control skills of technology, maintenance, and 
configuration engineers who support operations.

A process simulation with high dynamic fidelity is impor-
tant for testing process and control system interaction and 

performance.

Not well recognized is that the dynamic models used often for training opera-
tors as part of an automation project have a much wider utility that today is more 
important than ever. There is a great opportunity to use the digital twin to maximize 
the synergy between operators, process control engineers, and the control systems. To 
start on this path, process control engineers must be given the time to learn and use a 
digital twin and set up online metrics for process capacity and efficiency. The digital 
twin offers flexible and fast exploring =>  discovering =>  prototyping =>  testing =>  
justifying =>  deploying =>  testing =>  training =>  commissioning =>  maintaining =>  
troubleshooting =>  auditing =>  continuous improvement showing the “before” and 
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“after” benefits of solutions from online metrics. Figure 5-3a outlines the major steps 
in continuous improvement maximizing innovation [10].

The capability of dynamic models for improving system performance has greatly 
increased, even though the use has focused mostly on training operators as an auto-
mation project nears completion. The digital twin should detail the tasks needed to 
address difficult situations based on the best operator practices and process knowl-
edge and eliminate the need for special operator actions through state-based control. 
Advanced process control (APC) and MPC can deal with disturbances and address con-
straints intelligently, continually, and automatically, with great repeatability. Compare 
this with what operators can do in terms of constant attention, deep knowledge, and 
timely predictive corrections considering dead time, multivariable situations, and 
uncertainty in human behavior. Some operators may do well, but this is not carried 
over to all operators. Then, of course, an operator can have a bad day. Automation 
enables continuous improvement and recognition of abnormal conditions by a much 
more consistent operation. A better understanding by the operator of control system 
functionality and process performance from online metrics greatly reduces disrup-
tions by an operator unnecessarily taking a control system out of its highest mode 
and/or making changes in flows. Furthermore, procedural automation can eliminate 
the manual operations during start-up when risk is the greatest compared to normal 
fed-batch or continuous operation [10].

Note that while we have singled out operators and process control engineers, the 
need for knowledge to attain the best performance extends to maintenance techni-
cians, process engineers, mechanical engineers, and information technology special-
ists. Think of what can be realized if we were all on the same page understanding the 

Figure 5-3a.  Continuous improvement can become an inherent part of the digital twin maximizing 
synergy of operational, process, and control system knowledge [10].
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153Chapter 5 – Digital Twin

process and operational opportunities and the value of the best measurements, valves, 
controllers, and software [10].

Here is a brief summary of the many possible uses of a digital twin:

• Cause and effect relationships – Data analytics can point to many possibili-
ties, but the relationships identified are correlations and not necessarily cause 
and effect. Also, the data sets used in data analytics are limited to the range of 
plant operation, which by design may not show the changes possible. Process 
control is all about changes. We saw this from the beginning in our first course 
on control theory where all the variables for Laplace transforms and frequency 
response were deviation variables. We must see the effect of changes in pro-
cess inputs on the changes in process outputs. A digital twin can make all the 
changes that you cannot make in a real plant. You can be creative, freeing your 
mind to make changes, learning the most from mistakes. We can do this all in 
the safe environment of the digital twin [13]. The resulting data can verify cor-
relations, provide richer data sets for data analytics, identify the dynamic com-
pensation needed in data analytics for the predictions by projection to latent 
structures also known as partial least squares (PLS), and provide a much leaner, 
faster, safer, and more focused design of experiments (DOE) for the actual plant. 
Root cause analysis can be greatly improved [10].

• Interactions and resonance – The degree of interaction and resonance depend 
on the dynamics, tuning, and oscillation periods. The digital twin can show all 
this and much more using Power Spectrum analyzers to track down the culprit 
if the process and automation system dead times are modeled [10].

• Valve and sensor response – The largest source of dead time and oscillations 
can be traced back in most loops to the valve and sensor response. In particular, 
most of the valves designed for high capacity and tight shutoff not only have 
a poor response time but also will cause continuous limit cycles from stiction 
and backlash [11]. Showing the effect of slow or noisy sensors and on-off valves 
posing as throttling valves can provide the justification for getting the best mea-
surements and valves. You can show the effect of sensor and valve failures and 
the value of redundancy and a smooth recovery [10].

• Process safety stewardship – The digital twin should be used for extensive and 
continual testing of all the layers of protection in addition to the detailed design 
and implementation of the safety instrumented system (SIS). The interplay and 
performance of layers should be thoroughly evaluated and documented for all 
the important scenarios. The speed of measurements and valves is often not 
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thoroughly understood, and the consequences of failures should be analyzed in 
these scenarios [10].

• Control system and SIS knowledge – One of the most difficult aspect of control 
system and SIS design is recognizing the implications of measurement and final 
control element repeatability, rangeability, reliability, resolution, and response 
time. The digital twin enables you to explore and determine the value of the 
best instrumentation and best PID control and MPC, including the solutions 
and parameters needed. You must see how well the systems play together and 
help the operator in abnormal conditions. You can try all kinds of what-if sce-
narios to see how the system and operator perform [10].

• Validation and regulatory support – The validation and regulatory compli-
ance of automation systems in pharmaceutical production requires a large 
expenditure of time and expertise in automation projects. The digital twin 
offers the verification of performance needed for confirmation and documen-
tation [10].

• Checkout of code – Checking out the code and control sequences before the 
actual plant start-up enables the control engineer to validate that the code was 
written as required and designed. It allows debugging for any mistakes made 
during the coding and validating seen in the coordination of each sequence. 
The more time the control engineer spends checking out the code and exercis-
ing the sequences, the fewer issues he or she will face during the start-up and 
commissioning of the plant.

• Process and equipment knowledge – Most of our deep understanding of 
the implications of process and mechanical designs has come from running 
dynamic models. This was particularly true for the specialties of pH and com-
pressor control. For pH control, the extraordinary sensitivity and rangeability 
and consequential incredible nonlinearity of a system of strong acids and bases 
leads to strict design requirements in terms of minimizing mixing and injection 
dead time and seeking better set points, and the possibility of using weak acids 
or weak bases and conjugate salts to help reduce the steepness and nonlinearity. 
Today, we have the ability to handle conjugate salts as well as a wide spectrum 
of weak acids and weak bases by means of an expanded charge balance equa-
tion detailed in Chapter 9 [10, 11].

• Process equipment degradation – The consequences of fouling of heat trans-
fer surfaces, thermowells and electrodes, loss of catalyst activity, and plugging 
of filters can be studied and more optimum times for maintenance and clean-
ing scheduled. Better installation practices and redundancy of measurements 
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155Chapter 5 – Digital Twin

can be justified. For pH, three electrodes with middle signal selection provide 
the best protection against reaction to noise, failures of any type, and fouling 
[10, 11].

• Start-ups, transitions, shutdowns, and batch operation – The design and value 
of procedural automation and state-based control for fed-batch and continu-
ous processes is best achieved by trying out all conceivable scenarios in a dig-
ital twin. The digital twin is also the key for optimizing batch profiles, end 
points, and cycle times. If an operator claims his actions cannot be automated, 
there is an even a greater motivation for a digital twin to identify and test the 
best actions. The automated repeatable best actions reveal the other sources of 
changes by eliminating the variability from operator response [10, 11].

• Optimum operating points – Finally, you can identify and document the ben-
efits of better set points and achieve these set points more reliably and exten-
sively by feedforward control, override control, batch profile control, full throttle 
batch control, and model predictive control [10].

Before the configuration even starts in the front end of a project, the process models 
can be used to evaluate control strategies and advanced control tools. In the past, this 
was done with off-line dynamic simulations. Having ready access to an industrial tool 
set for both basic and advanced control and simulations that is adapted to benchtop or 
pilot-plant runs offers the opportunity for rapid prototyping. This can lead to control 
definitions that have better detail and potential performance. Benchtop or pilot-plant 
systems with a mini version of the industrial DCS are now available that greatly facili-
tate the development and scale-up of the control system [6]. Benchtop systems and pilot 
plants that have all the functionality of the main manufacturing systems are not yet 
prevalent because the development groups of these types of companies traditionally 
do not have the expertise (and more importantly the interest) to configure, maintain, 
and engineer these systems. The digital twin enables a synergy between scientists and 
control engineers to make the incredible capability of DCS part of the R&D process.

The digital twin can be demonstrated with the industrial batch, basic, and advanced 
control systems used in the benchtop or pilot-plant system. The process models can be 
adapted by way of a connection to a benchtop or pilot-plant system or by built-in high-
speed playback of process data from experimental runs. An opportune time to take 
advantage of the PAT initiative is during the research and process development phase. 
The value of benchtop and pilot-plant systems that have an industrial DCS is significant 
in terms of project schedule, cost, and effectiveness because the DCS enables process 
control to be designed into the plant at an early stage and puts the biochemist, process 
technology, and configuration engineer on the same page [6]. However, the best return 
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on investment (ROI) for PAT is realized by eventually implementing advanced process 
analysis and control in large-scale manufacturing processes.

In a digital twin, innovative strategies such as effective switching of the control-
ler output can be trialed and tuned. Advanced control tools such as adaptive control, 
auto tuning, fuzzy logic, MPC, neural networks (NNs), principal component analysis 
(PCA), and PLS can be demonstrated, adjusted, and evaluated “faster than real time.”

A benchtop or pilot-plant bioreactor that has an industrial control 
system offers significant opportunities for reducing configuration 
costs, improving communication, developing a digital twin, and 
prototyping advanced control, but the greatest ROI is realized by 

 implementing PAT in large-scale manufacturing processes.

As a general rule of thumb, five changes are needed for each process input to develop 
an experimental model of a process output. For MPC, this corresponds to a minimum of 
five step changes in each process input, at least one of which is held long enough for the 
process output to reach a steady condition. For NN, PCA, and PLS it means a minimum 
of five batches of process input in which the respective process input differed from the 
normal value. Although actual plant operation is obviously the best source of data, the 
long batch cycle time and the desire to minimize disruptions from the introduction of 
perturbations severely restricts the amount of useful plant data available for the devel-
opment of MPC, NN, PCA, and PLS. For example, developing a PCA with four inputs 
for detecting an abnormal batch would require at least 20 batches with varying inputs 
and at least five batches with normal inputs. If the batch cycle time is about two weeks, 
it would take about a year of plant production to have enough data. If you consider that 
you cannot deliberately optimize the spectrum of variability in the inputs, then it may 
take several years of production runs to have enough data.

In contrast, perturbations can be automated and introduced to a digital twin run-
ning faster than real time so that in 2 weeks there is enough data to identify models for 
MPC, to train NN, to develop latent variables and discriminant analysis for PCA, and to 
predict economic variables via PLS. The predictive ability of MPC, NN, PCA, and PLS 
can then be verified and evaluated by the high-speed playback of previous plant batches.

Conventional PCA assumes that all process inputs other than the ones used for 
the PCA are fixed. A digital twin running in real time that is synchronized with the 
actual plant can be used to predict the effect of variations in other process inputs by 
using the model-based and super model-based PCA algorithms described in Section 
8.4 of Chapter 8.
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The digital twin can also be used to help explore more optimal operating conditions 
and investigate what-if scenarios. These scenarios are important for identifying the 
cause of an abnormal batch. Today, PCA for batch fault detection only identifies a batch 
as abnormal. Logic needs to be added to diagnose the fault. Fuzzy logic rule sets have 
been used in conjunction with PCA to provide real-time predictive fault analysis [7]. A 
digital twin can help develop these rule sets off-line faster than in real time by creating 
scenarios and evaluating the rule sets through the high-speed playback of previous 
batches. An online digital twin synchronized with the real plant can be sped up and 
run to batch completion to predict and analyze abnormal situations based on current 
batch conditions. A digital twin can also be used to help create the predictive capability 
of the PLS “Y space” of economic variables from the PCA “X space” of process variables.

A digital twin can eliminate process testing and provides years of 
 process data within a few weeks for advanced control, fault analysis, 

and performance prediction.

Additionally, a digital twin can be used to provide inferential real-time measure-
ments of important process outputs such as nutrient, biomass, and product concentra-
tion. The built-in material balances can be used in conjunction with kinetic models 
to predict concentrations. These predictions are then delayed so that the values are 
synchronized with online or lab analysis. The concentration is shifted by a bias that is 
a fraction of the difference between the inferential and actual measurement, similar 
to what is done in the feedback correction of an NN used for property estimation [3].

A digital twin can provide faster, more reliable, and smoother 
 measurements of concentration than online analyzers.

The rate of change of these concentrations can be used by MPC to optimize batch 
profiles as described in Section 4.4 of Chapter 4. A digital twin can also be run “faster 
than real time” to batch completion to provide an online prediction of key perfor-
mance indicators (KPIs), such as batch cycle time and yield, based on current batch 
conditions and inferential measurements. Presently, the understanding of the value 
of process control in management is decreasing and the emphasis on profitability is 
increasing. It cannot be taken for granted that practitioners will be given the time 
and funding to make process control improvements. The retirement of most of the 
process control experts has exasperated the situation. We are at a critical point in 
terms of the decreasing rate of innovation and increasing tendency to copy jobs in 
migration projects. The best way to turn this around is by means of KPI with actual 
dollars correlated to process control improvements that can be revealed and tested 
by dynamic first-principle models in a digital twin and made available real time to 
operations [14].
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A key insight is that the myriad improvements can be categorized as increases in 
process efficiency, capacity, flexibility, and safety. Increases in process efficiency show 
up primarily as a decrease in the ratio of the running average of raw material mass or 
energy used to the running average of product mass produced. Increases in process 
capacity show up as an increased running average of the product mass produced. 
Process capacity increases can be the result of higher production rates, faster start-ups, 
better ability to deal with abnormal operation, and greater onstream time. In all cases, 
the product mass must meet customer specifications. Flexibility shows up as the abil-
ity to meet different production rates or different product requirements. Safety shows 
up as minimizing activations of the SIS besides the obvious metric of minimizing the 
number of incidents, including near misses [11].

The period for metrics must be large enough to eliminate noise and inverse response 
and to provide the ability to make decisions based on the objective and process type. 
For evaluating operator and control system actions, the period is normally the batch 
cycle time and operator shift for batch and continuous processes, respectively. The 
period is a month for correlation with accounting metrics. For alerting operators as 
fast as possible to the consequence of actions taken (e.g., changing the controller set 
point or mode), the period can be reduced to be as short as six times the total loop dead 
time. The metrics at the end of a month, batch, and shift are historized for evaluation 
of plant, batch, and operator performance [11].

There is often a trade-off between process metrics. Increasing the production rate 
often comes at a cost of a decreasing efficiency. Similarly, changing production rates 
reduces both process efficiency and capacity because movement to the new process 
operating point takes time and the product produced in the transition may not meet 
specifications. Increases in yield (decrease in raw material use) can be taken as an 
increase in process efficiency if the raw material feed rate is accordingly decreased. 
There may be an accompanying decrease in the cost of recycle and waste treatment 
operations. Alternatively, increases in yield can be taken as an increase in process 
capacity by keeping the raw material feed rate constant. Prolonging a batch can 
improve yield and thus efficiency, but the lengthening of batch cycle time translates to 
less batch capacity, particularly as reaction rates or purification rates decline near end 
point. Time to reach a new set point can be shortened by overdriving the manipulated 
variable past its final resting value. For batch processes, reaching a new composition, 
pH, pressure, or temperature set point is often not possible without the overdrive. 
The process efficiency is reduced during the overdrive, but the process capacity is 
increased either as a reduction in batch cycle time or an increase in the continuous 
production rate upon reaching the set point [11].
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Especially important is the translation of online metrics to the bottom-line effect on 
production unit profitability in the plant accounting system. This means benefits must 
be reported on a monthly basis and presented per accounting format and procedures. 
Also, obvious but often not addressed is the buy-in by the plant accounting depart-
ment and plant management. This is best done by real-time accounting (RTA) [11].

The KPI in the digital and actual plant should be converted to dollars of revenue 
and dollars of cost with a running total for the last month, batch, and shift. Online 
metrics on process efficiency, often expressed as raw material mass or energy used per 
unit mass of product, must be multiplied by the production rate at the time and the 
cost per unit mass or energy used to get dollars cost per unit time. Online metrics on 
process capacity must have a production rate multiplied by the price of product(s) sold. 
This is best accomplished by getting an accounting representative to participate in the 
development and use of the metrics [11].

An opportunity sizing details the gaps between current and potential perfor-
mance that are estimated by identifying the best performance found on cost sheets 
and from a DOE, which is most often done in a digital twin due to increasingly greater 
limitations to such experimentation in an actual plant. After completion of the oppor-
tunity sizing, a 1- or 2-day opportunity assessment was led by a process engineer with 
input sought and given by operations, accounting and management, marketing, main-
tenance, field and lab analyzer specialists, instrument and electrical engineers, and 
process control engineers. Marketing provided the perspective and details on how the 
demand and value of different products is expected to change. This knowledge was 
crucial for effectively estimating the benefits from increases in process flexibility and 
capacity. Opportunities for procedure automation and plantwide ratio control making 
the transition from one product to another faster and more efficient were consequently 
identified. Agreement was sought and often reached on the percentage of each gap 
that could be eliminated by potential process control improvement (PCI) proposed 
and discussed during the meeting. A rough estimate of the cost and time required for 
each PCI implementation was also listed. The ones with the least cost and time require-
ments were noted as quick-wins. To take advantage of the knowledge and enthusiasm 
and momentum, the quick-wins were usually started immediately after the meeting 
or the following week. Figure 5-3b shows this PCI opportunity assessment process [11]

An improvement in one unit’s operation performance may have a negative impact 
on another unit’s operation. For example, a decrease in steam generation from a waste 
furnace from more efficient operation (less waste production) decreases the steam 
available for power generation. Rapid changes in raw materials or energy usage may 
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upset the headers and systems that supply other systems. The online metrics should be 
extended to all unit operations affected to quantify the trade-offs [11].

The raw material and energy used does not have an immediate effect on product 
produced. Transportation and mixing delays, and time constants associated with vol-
umes and mass transfer and heat transfer rates, prevent the start of the effect on the 
product and slow down the completion of the effect. Transportation delays for plug 
flow volumes and time constants for back mixed volumes are both inversely propor-
tional to flow. There are dynamics and rangeability limitations associated with mea-
surements and valves that are often not recognized and included. Also, the time to 
reach and settle at a new set point depends on the ability to identify a dynamic model 
and tune the controller to meet the best objectives [11].

The PCIs must be able to address unknowns and disturbances but also be suf-
ficiently understood by operations to build their confidence to keep them in their 
highest control mode. Operators are fundamentally reluctant to relinquish manipula-
tion of process inputs and operating points if the benefits are not seen or understood. 
Operators may also be initially opposed to indications and comparisons of their per-
formance. For these reasons and many more, it is imperative that the performance 
metrics exhibit inappreciable noise and be consistently representative of changes in 
process performance. Using results in a positive way allows operators to take more 
ownership of process performance. The adage “if you don’t measure, you can’t control 
it” is especially important here [11].

Figure 5-3b. Thedigitaltwinenablesexperimentationandverificationtoidentifyandachievethebest
benefitsfromPCI[10].
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The digital twin can speed up the benefits gained from PAT by offering users the 
ability to use process and end point monitoring and control, continuous improvement, 
and knowledge management tools in an integrated and accelerated manner. The uses 
of the digital twin are illustrated in the functional overview provided by Figure 1-4b 
in Chapter 1 and are summarized as follows:

A digital twin can accelerate the benefits of a PAT initiative.

• Testing configuration and process interactions

• Educating operators, technicians, and engineers in process and control

• Rapid prototyping of innovative control strategies and advanced controls

• Evaluating tuning settings

• Identifying MPC models

• Developing latent variables and reference trajectories for PCA

• Developing logic for fault analysis by PCA

• Predicting abnormal situations online

• Developing and testing NN and PLS models

• Making inferential real-time measurements of important concentrations

• Optimizing batch profiles

• Predicting batch KPIs, such as cycle time and yield, and PLS economic variables

Figure 5-3c shows the functional value of a digital twin, highlighting the bidirec-
tional flows of control system and process/equipment knowledge of process control 
and analysis tools including online performance metrics for greater analysis, deal-
ing with kinetics multiplicative effect in Chapter 6, and justification of improvements. 
The “two-way” knowledge flow is the key to improving the process/equipment and 
the control system besides in addition to the dynamic model and data analytics. As 
the fidelity of the dynamic model increases, opportunities arise for these tools to get 
results from the digital twin that can be used in the actual plant. The dynamic model 
can be run faster than real time with the tuning corrected by applying the speedup 
factors. New control functionality can be developed and included in the dynamic 
model for evaluation. If online metrics show significant improvements in control and 
process performance, the functionality prototyped can be added as new blocks or as 
improvements to existing blocks in the DCS [11].
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5.4  Implementation
Probably the biggest obstacle to implementing a digital twin is the users’ lack of 
knowledge of the kinetic equations that are needed to calculate the growth rates and 
product formation rates as a function of batch operating conditions, such as tempera-
ture, pH, DO, and substrate concentration. As detailed in Chapter 6, generalized easy-
to-parametrize kinetic models have been developed that enable users to readily match 
historized plant batch profiles. This section discusses how an MPC can be set up to 
home in on the values of these parameters if they are in the ballpark. If the kinetics are 
unknown, NN may be able to predict kinetic parameters, terms, or rates from infer-
ential and actual measurements. The growth rates and product formation rates are 
included in the net calculation of the rate of change of biomass, nutrient, and product 
mass in the material balance. They are then integrated to get a new accumulation or 
concentration of the component, as described in Chapter 6. Online calculations of the 
OUR and carbon dioxide production rate (CPR) as NN inputs enhance the predictive 
capability of the NN. The result is a hybrid first-principle and NN model [8]. In gen-
eral, batch time should not be an NN input because the predictions are undesirably 
dependent on batch time. An NN without batch time as an input will be able to predict 
ethanol and cell mass [9].

Breakthroughs in kinetic models enable easily matching the batch 
profiles seen on trend recordings without a need to disclose propri-

etary R&D.

Figure 5-3c. Thetwo-wayflowofknowledgeinthedigitaltwinbetweentools,models,andtheactual
control system in the digital twin is the source of increasing synergy of knowledge between the process, 
control system, engineers, technicians, and data scientists [11].
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The OURs and CPRs can be used in lieu of kinetic equations, but it may be diffi-
cult to differentiate between the consumption and evolution associated with biomass 
growth vis-à-vis product formation rates.

If the equations are unknown, an NN may be able to predict the individual growth 
and production rates if there are online measurements or frequent lab measurements 
of biomass, product, and substrate concentration [9]. A benchtop or pilot-plant system 
offers the best opportunity for developing an NN. To minimize the investment, a skid 
of analyzers could be alternately connected to bench or plant systems to generate the 
test data needed for NN training and validation. This approach has proved to be suc-
cessful enough for state governments to accept online NN as a permissible alternative 
to online analyzers for combustion emissions monitoring (CEM) systems.

Online broth or media concentration measurements and NNs can 
predict growth rates and product formation rates without a prior 

knowledge of kinetics.

Composite blocks for the bioreactor, streams, final elements, and transmitters are 
inserted into the digital twin process model and wired up. External input and output 
parameter blocks are added and connected to the final element inputs and transmitter 
outputs, respectively. The control system configuration is imported, and the analog 
input blocks in the virtual control system are switched to the simulation mode. The 
paths of the external inputs for the final elements are chosen via a browser to be the 
outputs of the analog output blocks of the virtual control system.

Similarly, the paths of the external output parameters for the transmitters are selected 
to be the simulation inputs of the analog input blocks of the virtual control system. Analog 
outputs and analog inputs of loops that are not modeled can be simulated by simple tie-
backs in which the analog output is passed through signal characterizer, dead time, and 
filter blocks and then connected to the simulated input of the analog input block.

The concentrations, pressures, and temperatures of each inlet and outlet stream; 
the flow rate and pressure rise of each pump as a function of speed; the flow coefficient 
of each valve as a function of position; the agitator pumping rate as a function of speed; 
and the initial inventory, concentrations, temperature, and pressure of the bioreactor 
are then set. NN and PLS models that are developed from benchtop experiments or 
pilot-plant runs are added as necessary to enhance the kinetics described in Chapter 6. 
Control valve deadband and resolution are set in the actuator blocks, and measurement 
delays and lags are set in the transmitter blocks.

Benchtop systems offer the best opportunity for developing and 
 validating first-principle, PLS, or NN models.
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The batch sequence, basic process control system, and simulation are run in an 
off-line mode, and the simulation parameters are manually adjusted to match up the 
virtual with the real plant batch profiles of uncontrolled process outputs and manipu-
lated process inputs. For example, consider how the model may be adjusted for better 
fidelity for DO control. A kinetic parameter for the oxygen limitation effect is adjusted 
to match up oxygen uptake rates between the virtual and actual plant. A Henry’s law 
coefficient is then adjusted that determines the equilibrium DO (driving force for oxy-
gen transfer) to match up pressures. Finally, an oxygen mass transfer coefficient is 
adjusted to match up airflows.

When representative digital twin batch profiles are obtained, the processor load-
ing and profile alteration are checked as the real-time execution multiplier is increased, 
and the maximum practical speed is noted. Key model parameters are chosen as the 
manipulated variables, and associated process measurements are chosen as the con-
trolled variables of the MPC for adaptation of the digital twin. An automated test 
sequence is then run for the MPC at the highest possible speed off-line, and the MPC 
models are identified and visually checked as reasonable in terms of the direction and 
relative magnitude of the effect [1, 4].

The digital twin is then connected to the actual plant in a read-only nonintrusive 
setup. The digital twin modes, set points, and batch phases come from the actual 
plant. The set points (targets) of the MPC’s controlled variables for adaptation are 
externally referenced to the key respective measurements of the actual plant, as 
shown in the overview provided by Figure 1-4b in Chapter 1 and in the detailed sig-
nal paths outlined by Figure 5-4a. Because the relationship between model param-
eters and key process variables is generally nonlinear, an NN can be used to enhance 
the future trajectories of an MPC. Alternatively, a NN could be trained to adjust 
model parameters on a one-by-one basis. Because NNs are good at interpolation but 
not extrapolation, it is important to verify whether the inputs are within the train-
ing set range of values. The MPC offers a multivariable solution to adaptation of 
dynamic models [1, 4].

The use of standard tools, such as MPC, PLS, and NN, are preferred over custom 
and special reconciliation methods so the focus is on the application rather than the 
tool development and the results are more maintainable and therefore sustainable. 
Regardless of which technique is used, the model parameter values must be restricted 
to be within a practical range.

The MPC, PLS, and NN for adapting the digital twin can be devel-
oped off-line and then tested in a read-only mode.
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A mass spectrometer can be used to measure the oxygen concentration in the off-
gas and a material balance can be used to measure the net difference of oxygen flow 
going in and coming out of the media to compute the OUR. If the DO concentration 
is not constant, the average rate of change of DO multiplied by the volume should be 
included in the calculation.

The MPC targets and controlled variables are the actual plant and digital twin 
manipulated variables (e.g., flows), respectively, in Figure 5-4a. That figure shows how 
to adapt a bioreactor model to provide more accurate inferential measurements of bio-
mass growth and production rates that are slopes of the batch profiles for cell and 
product concentration. The MPC manipulated variables are model parameters (e.g., 
kinetic parameters) that affect these profiles [11].

The MPC can be identified and tested without the digital twin connected to the 
actual plant. The MPC development for adaptation is much faster than that of an actual 
plant MPC. This independence enables extensive adaptation and gaining associated 
knowledge of process relationships without any disruption to the plant [11].

The adaptation is done without affecting the actual plant because the plant’s manip-
ulated variables are being read by but not changed by the digital twin. It is critical that 
the digital twin have the same set points and tuning settings as the actual plant, and that 
the digital twin is started with controller outputs initialized to match the actual plant.

Figure 5-4a.  Nonintrusive automated adaptation of model parameters to match manipulated variables 
with potential future optimization based on improvement in KPIs.
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The optimized set points from MPC with inferential measurements of growth 
and production rate are done in an advisory mode not affecting the actual plant. Not 
shown in Figure 5-4a is that an MPC is run in automatic mode in another digital twin 
that is a duplicate of the adapted digital twin to generate and study the optimized set 
points. The set points are only eventually used to automatically optimize the plant if 
they prove more accurate, beneficial, and reliable per KPIs than an MPC with inferen-
tial measurements computed from online and at-line analyzers.

Figure 5-4b shows how an MPC was used to manipulate the Henry coefficient for 
oxygen to match up a change from 7700 to 7500 kPa per kmol/m3 (intent is to convey 
an overview example and not the specifics of test results). This brought the controlled 
variable of the digital twin head pressure to its set point (target), which is the actual 
plant head pressure. The speed of adaptation is set by the penalty on move (PM) for 
the model parameter.

After adaptation, the digital twin is run off-line faster than in real time to proto-
type new control strategies, PCA, fault detection, and abnormal situation prediction. 

Figure 5-4b. AdaptationofHenrycoefficienttomatchactualplantpressures.
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Inferential variables are computed, such as biomass growth rate and product forma-
tion rate, and the automated tests, such as those shown in Figure 5-4c (intent is to 
convey an overview example and not the specifics of test results), are run to identify 
the models of these rates versus various process inputs, such as DO and substrate con-
centration or feed. Even though the process operating point is moving (nonstationary) 
because it is a batch operation, the software is able to identify the models for optimiz-
ing growth and production rates. Inferential measurements of various concentrations 
are used as needed to fill in the gaps between lab measurements.

After innovative control, advanced diagnostics, and MPC applications have been 
prototyped and documented, they can be implemented on benchtop or pilot-plant sys-
tems. If the digital twin provides inferential measurements, it is run in real time and 
synchronized with these systems. After verification and validation, and accounting for 
scale-up factors, these applications and the digital twin can be installed for plant tri-
als. Initially, these systems run only in the monitoring mode. When process inputs are 
finally manipulated, they are initially restricted to a very narrow range.

Figure 5-4c. Automatedhigh-speedtestofdigitaltwinformodelidentification.
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The expertise and time required for using and supporting external high-fidelity 
process simulation software no longer exists in the process industry, except in some 
large petroleum and chemical companies. The modeling of mass transfer for DO 
and CO2 modeling is straightforward, and recent breakthroughs in kinetic models 
described in Chapter 6 make modeling of growth and product formation rates much 
easier than in the past.

Excluding kinetics, the thermodynamics needed for models of bioreac-
tors are generally simpler than those needed for chemical reactors.

The charge balance is critical for computing the pH, which is important for the 
kinetics. Process simulations in the literature for bioreactors generally use empirical 
relationships for pH that do not show the effect of alternative operating conditions and 
upsets. Chapter 9 shows how to set up the charge balance from the component balances.

A charge balance is needed to properly simulate pH.

5.5  Conclusion
The digital twin previously known as virtual plant opens our minds to much greater 
possibilities by exploration and discovery without interfering with plant operations. 
We develop a much deeper understanding of the process and control system [5, 12]. 
Consequently, we can exercise much greater creativity, which translates to increasing 
process capacity and efficiency with benefits that are measured and documented. This 
leads to personal advancement and freedom for innovation. The authors of this book 
look forward to mentoring everyone on this path to achievement and recognition.

5.6  Digital Twin Best Practices
Here are best practices that help you use the digital twin not only for operator training 
but also for improving process performance and time to market.

1. Implement a digital twin that requires no changes to the DCS alarms, graphics, 
or logic.

2. Use first-principle process models with energy and material balances for all 
processes and charge balances for pH with representative physical properties 
and components.

3. For pH models, add a small but significant concentration of carbonic acid from 
exposure to atmospheric CO2 and conjugate salts so that the titration curve 
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generated matches lab results, particularly in terms of the pH range and titra-
tion curve slope in the control region as detailed in Chapter 9.

4. Use an actual download of an automation system (not an imitation by emula-
tion) that enables free exchange between the digital twin and the actual sys-
tem of

{{ the configuration, alarms, and APC tools (e.g., adaptive control, model pre-
dictive control, and data analytics) by exporting and importing modules and 
models, and

{{ the historian and graphics by copying and pasting files.

5. Achieve at least medium fidelity by adjusting model parameters so that operat-
ing points sufficiently match process variables and flows on accurate process 
flow diagrams (PFDs).

6. Use a variable dead time block to simulate mixing and injection delays.

7. Ensure the process model can show the dynamics in start-up and transitions.

8. Have process engineers evaluate process operating conditions and response.

9. Include automation system dynamics such as the deadband and resolution 
limits in control valves (e.g., backlash-stiction) and in VFDs (e.g., I/O cards, 
speed sensor, setup), sensor transportation delays, sensing element lags (e.g., 
thermowell), transmitter lags (e.g., damping), wireless update rate, and ana-
lyzer cycle time and analysis time.

10. Develop, test, and document scenarios including transitions, start-up, and 
abnormal conditions (e.g., mechanical and automation system failures).

11. Develop and use online metrics for process efficiency and capacity.

12. Analyze and improve alarm management and the human machine interface 
using Center for Operator Performance and ISA standards for guidance.

13. Detail best operator responses during start-ups and to abnormal situations 
(e.g., equipment, valve, or sensor failures) for procedure automation (state-
based control).

14. The digital twin can provide methods and practical considerations in online 
metrics computations, be adapted to improve fidelity by manual and auto-
mated adjustment of model parameters to match up virtual and actual 
flows, and be used to discover and realize process control improvement 
opportunities.
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15. Ensure the operator training system (OTS) is continually updated and available 
for refreshing and enhancing operator performance.

16. Use OTS to educate technicians and engineers in maintenance and in auto-
mation, mechanical, and process technical support to improve synergy with 
operations. Use a multidiscipline team that includes plant operations. If the 
models will be deployed online, engage the operators early in the cycle. Start 
with your business objectives. What is the problem to be addressed, and how 
will you measure success in accomplishing these objectives?

17. Use a high-fidelity digital twin to develop online process metrics.

18. Synchronize process inputs with process outputs for online metrics by the 
individual use of dead time and filter blocks for synchronization time (e.g., 
total dead time and open-loop time constant).

19. Use running averages of raw materials and energy and resulting product for 
metrics.

20. Use different periods for running averages to show metric short- and long-term 
effects.

21. Improve metric signal-to-noise ratio by a filter time less than 1/5 synchroniza-
tion time.

22. The shortest period for process evaluation should be greater than twice the 
synchronization time. Additional metrics to alert operations can have shorter 
periods.

23. A period equal to shift time shows the performance of operators, a period 
equal to the batch cycle time shows the performance of batch operations, a 
period equal to a month helps to predict effects on accounting cost sheets, and 
a period as short as six total loop dead times can alert the operator to con-
sequences of actions taken (e.g., changing set points or modes) provided the 
signal-to-noise ratio is sufficient.

24. Involve accounting, plant management, and marketing in the development and 
use of online metrics for real-time accounting.

25. Use a digital twin for faster and more effective metrics and PCI implementation.

26. Use digital twin to reduce plant testing required for metrics and PCI.

27. Develop an MPC to adapt the digital twin without connection to the actual 
plant.
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28. Use actual plant set points and controller tuning settings adjusted for model 
speedup in the digital twin.

29. To adapt the digital twin, adjust the model parameters to match the manip-
ulated process inputs by the MPC and PID loops and noncontrolled process 
outputs.

30. To reduce the amount of identification needed in the actual plant for online 
process metrics synchronization, add injection and mixing delays and automa-
tion system dynamics to the digital twin for the development of metrics.
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